Good models protect us from bad models

One of the criticisms leveled at resilience engineering is that the insights that the field generates aren’t actionable: “OK, let’s say you’re right, that complex systems are never perfectly understood, they’re always changing, they generate unexpected interactions, and that these properties explain why incidents happen. That doesn’t tell me what I should do about it!”

And it’s true; I can talk generally about the value of improving expertise so that we’re better able to handle incidents. But I can’t take the model of incidents that I’ve built based on my knowledge of resilience engineering and turn that into a specific software project that you can build and deploy that will eliminate a class of incidents.

But even if these insights aren’t actionable, that they don’t tell us about a single thing we can do or build to help improve reliability, my claim here is that these insights still have value. That’s because we as humans need models to make sense of the world, and if we don’t use good-but-not-actionable models, we can end up with actionable-but-not-good models. Or, as the statistics professor Andrew Gelman put it in his post The social sciences are useless. So why do we study them? Here’s a good reason back in 2021:

The baseball analyst Bill James once said that the alternative to good statistics is not no statistics, it’s bad statistics. Similarly, the alternative to good social science is not no social science, it’s bad social science.

The reason we do social science is because bad social science is being promulgated 24/7, all year long, all over the world. And bad social science can do damage.

Because we humans need models to make sense of the world, incidents models are inevitable. A good-but-not-actionable incident model will feel unsatisfying to people who are looking to leverage these models to take clear action. And it’s all too easy to build not-good-but-actionable models of how incidents happen. Just pick something that you can measure and that you theoretically have control over. The most common example of such a model is the one I’ll call “incidents happen because people don’t follow the processes that they are supposed to.” It’s easy to call out process violations in incident writeups, and it’s easy to define interventions to more strictly enforce processes, such as through automation.

In other words, good-but-not-actionable models protect us from the actionable-but-not-good models. They serve as a kind of vaccine, inoculating us from the neat, plausible, and wrong solutions that H.L. Mencken warned us about.

2 thoughts on “Good models protect us from bad models

Leave a comment