Missing the forest for the trees: the component substitution fallacy

Here’s a brief excerpt from a talk by David Woods on what he calls the component substitution fallacy (emphasis mine):

Everybody is continuing to commit the component substitution fallacy.

Now, remember, everything has finite resources, and you have to make trade-offs. You’re under resource pressure, you’re under profitability pressure, you’re under schedule pressure. Those are real, they never go to zero.

So, as you develop things, you make trade offs, you prioritize some things over other things. What that means is that when a problem happens, it will reveal component or subsystem weaknesses. The trade offs and assumptions and resource decisions you made guarantee there are component weaknesses. We can’t afford to perfect all components.

Yes, improving them is great and that can be a lesson afterwards, but if you substitute component weaknesses for the systems-level understanding of what was driving the event … at a more fundamental level of understanding, you’re missing the real lessons.

Seeing component weaknesses is a nice way to block seeing the system properties, especially because this justifies a minimal response and avoids any struggle that systemic changes require.

Woods on Shock and Resilience (25:04 mark)

Whenever an incident happens, we’re always able to point to different components in our system and say “there was the problem!” There was a microservice that didn’t handle a certain type of error gracefully, or there was bad data that had somehow gotten past our validation checks, or a particular cluster was under-resourced because it hadn’t been configured properly, and so on.

These are real issues that manifested as an outage, and they are worth spending the time to identify and follow up on. But these problems in isolation never tell the whole story of how the incident actually happened. As Woods explains in the excerpt of his talk above, because of the constraints we work under, we simply don’t have the time to harden the software we work on to the point where these problems don’t happen anymore. It’s just too expensive. And so, we make tradeoffs, we make judgments about where to best spend our time as we build, test, and roll out our stuff. The riskier we perceive a change, the more effort we’ll spend on validation and rollout of the change.

And so, if we focus only on issues with individual components, there’s so much we miss about the nature of failure in our systems. We miss looking at the unexpected interactions between the components that enabled the failure to happen. We miss how the organization’s prioritization decisions enabled the incident in the first place. We also don’t ask questions like “if we are going to do follow-up work to fix the component problems revealed by this incident, what are the things that we won’t be doing because we’re prioritizing this instead?” or “what new types of unexpected interactions might we be creating by making these changes?” Not to mention incident-handling questions like “how did we figure out something was wrong here?”

In the wake of an incident, if we focus only on the weaknesses of individual components then we won’t see the systemic issues. And it’s the systemic will continue to bite us long after we’ve implemented all of those follow-up action items. We’ll never see the forest for the trees.

Making peace with the imperfect nature of mental models

We all carry with us in our heads models about how the world works, which we colloquially refer to as mental models. These models are always incomplete, often stale, and sometimes they’re just plain wrong.

For those of us doing operations work, our mental models include our understanding of how the different parts of the system work. Incorrect mental models are always a factor in incidents: incidents are always surprises, and surprises are always discrepancies between our mental models and reality.

There are two things that are important to remember. First, our mental models are usually good enough for us to do our operations work effectively. Our human brains are actually surprisingly good at enabling us to do this stuff. Second, while a stale mental model is a serious risk, none of us have the time to constantly verify that all of our mental models are up to date. This is the equivalent of popping up an “are you sure?” modal dialog box before taking any action. (“Are you sure that pipeline that always deploys to the test environment still deploys to test first?”)

Instead, because our time and attention is limited, we have to get good at identifying cues to indicate that our models have gotten stale or are incorrect. But, since we won’t always get these cues, it’s inevitable that our mental models will go out of date. But that’s just an inevitable part of the job when you work in a dynamic environment. And we all work in dynamic environments.

Good category, bad category (or: tag, don’t bucket)

The baby, assailed by eyes, ears, nose, skin, and entrails at once, feels it all as one great blooming, buzzing confusion; and to the very end of life, our location of all things in one space is due to the fact that the original extents or bignesses of all the sensations which came to our notice at once, coalesced together into one and the same space.

William James, The Principles of Psychology (1890)

I recently gave a talk at the Learning from Incidents in Software conference. On the one hand, I mentioned the importance of finding patterns in incidents:

But I also had some… unkind words about categorizing incidents.

We humans need categories to make sense of the world, to slice it up into chunks that we can handle cognitively. Otherwise, the world would just be, as James put it in the quote above, one great blooming, buzzing confusion. So, categorization is essential to humans functioning in the world. In particular, if we want to identify meaningful patterns in incidents, we need to do categorization work.

But there are different techniques we can use to categorize incidents, and some techniques are more productive than others.

The buckets approach

An incident must be placed in exactly one bucket

One technique is what I’ll call the buckets approach of categorization. That’s when you define a set up of categories up front, and then you assign each incident that happens to exactly one bucket. For example, you might have categories such as:

  • bug (new)
  • bug (latent)
  • deployment problem
  • third party

I have seen two issues with the bucketing approach. The first issue is that I’ve never actually seen it yield any additional insight. It can’t provide insights into new patterns because the patterns have already been predefined as the buckets. The best it can do is give you one type of filter to drill down and look at some more issues in more detail. There’s some genuine value in giving you a subset of related incidents to look more closely at, but in practice, I’ve rarely seen anybody actually do the harder work of looking at these subsets.

The second issue is that incidents, being messy things, often don’t fall cleanly into exactly one bucket. Sometimes they fall into multiple, and sometimes they don’t fall into any, and sometimes it’s just really unclear. For example, an issue may involve both a new bug and a deployment problem (as anyone who has accidentally deployed a bug to production and then gotten into even more trouble when trying to roll things back can tell you). The bucket approach forces you to discard information that is potentially useful in identifying patterns by requiring you to put the incident into exactly one bucket. This inevitably leads to arguments about whether an incident should be classified into bucket A or bucket B. This sort of argument is a symptom that this approach is throwing away useful information, and that it really shouldn’t go into a single bucket at all.

The tags approach

You may hang multiple tags on an incident

Another technique is what I’ll call the tags method of categorization. With the tags method, you annotate an incident with zero, one, or multiple tags. The idea behind tagging is that you want to let the details of the incident help you come up with meaningful categories. As incidents happen, you may come up with entirely new categories, or coalesce existing ones into one, or split them apart. Tags also let you examine incidents across multiple dimensions. Perhaps you’re interested in attributes of the people that are responding (maybe there’s a “hero” tag if there’s a frequent hero who comes in to many incidents), or maybe there’s production pressure related to some new feature being developed (in which case, you may want to label with both production-pressure and feature-name), or maybe it’s related to migration work (migration). Well, there are many different dimensions. Here are some examples of potential tags:

  • query-scope-accidentally-too-broad
  • people-with-relevant-context-out-of-office
  • unforeseen-performance-impact

Those example tags may seem weirdly specific, but that’s OK! The tags might be very high level (e.g., production-pressure) or very low level (e.g., pipeline-stopped-in-the-middle), or anywhere in between.

Top-down vs circular

The bucket approach is strictly top-down: you enforce a categorization on incidents from the top. The tags approach is a mix of top-down and bottom-up. When you start tagging, you’ll always start with some prior model of the types of tags that you think are useful. As you go through the details of incidents, new ideas for tags will emerge, and you’ll end up revising your set of tags over time. Someone might revisit the writeup for an incident that happened years ago, and add a new tag to it. This process of tagging incidents and identifying potential new tags categories will help you identify interesting patterns.

The tag-based approach is messier than the bucket-based one, because your collection of tags may be very heterogeneous, and you’ll still encounter situations where it’s not clear whether a tag applies or not. But it will yield a lot more insight.

Does any of this sound familiar?

The other day, David Woods responded to one of my tweets with a link to a talk:

I had planned to write a post on the component substitution fallacy that he referenced, but I didn’t even make it to minute 25 of that video before I heard something else that I had to post first, at the 7:54 mark. The context of it is describing the state of NASA as an organization at the time of the Space Shuttle Columbia accident.

And here’s what Woods says in the talk:

Now, does this describe your organization?

Are you in a changing environment under resource pressures and new performance demands?

Are you being pressured to drive down costs, work with shorter, more aggressive schedules?

Are you working with new partners and new relationships where there are new roles coming into play, often as new capabilities come to bear?

Do we see changing skillsets, skill erosion in some areas, new forms of expertise that are needed?

Is there heightened stakeholder interest?

Finally, he asks:

How are you navigating these seas of complexity that NASA confronted?

How are you doing with that?

A small mistake does not a complex systems failure make

I’ve been trying to take a break from Twitter lately, but today I popped back in, only to be trolled by a colleague of mine:

Here’s a quote from the story:

The source of the problem was reportedly a single engineer who made a small mistake with a file transfer.

Here’s what I’d like you to ponder, dear reader. Think about all of the small mistakes that happen every single day, at every workplace, on the face of the planet. If a small mistake was sufficient to take down a complex system, then our systems would be crashing all of the time. And, yet, that clearly isn’t the case. For example, before this event, when was the last time the FAA suffered a catastrophic outage?

Now, it might be the case that no FAA employees have ever made a small mistake until now. Or, more likely, the FAA system works in such a way that small mistakes are not typically sufficient for taking down the entire system.

To understand this failure mode, you need to understand how it is that the FAA system is able to stay up and running on a day-to-day basis, despite the system being populated by fallible human beings who are capable of making small mistakes. You need to understand how the system actually works in order to make sense of how a large-scale failure can happen.

Now, I’ve never worked in the aviation industry, and consequently I don’t have domain knowledge about the FAA system. But I can tell you one thing: a small mistake with a file transfer is a hopelessly incomplete explanation for how the FAA system actually failed.

The Allspaw-Collins effect

While reading Laura Maguire’s PhD dissertation, Controlling the Costs of Coordination in Large-scale Distributed Software Systems, when I came across a term I hadn’t heard before: the Allspaw-Collins effect:

An example of how practitioners circumvent the extensive costs inherent in the Incident Command model is the Allspaw-Collins effect (named for the engineers who first noticed the pattern). This is commonly seen in the creation of side channels away from the group response effort, which is “necessary to accomplish cognitively demanding work but leaves the other participants disconnected from the progress going on in the side channel (p.81)”

Here’s my understanding:

A group of people responding to an incident have to process a large number of signals that are coming in. One example of such signals is the large number of Slack messages appearing in the incident channel as incident responders and others provide updates and ask questions. Another example would be additional alerts firing.

If there’s a designated incident commander (IC) who is responsible for coordination, the IC can become a bottleneck if they can’t keep up with the work of processing all of these incoming signals.

The effect captures how incident responders will sometimes work around this bottleneck by forming alternate communication channels so they can coordinate directly with each other, without having to mediate through the IC. For example, instead of sending messages in the main incident channel, they might DM each other or communicate in a separate (possibly private) channel.

I can imagine how this sort of side-channel communication would be officially sanctioned (“all incident-related communication should happen in the incident response channel!“), and also how it can be adaptive.

Maguire doesn’t give the first names of the people the effect is named for, but I strongly suspect they are John Allspaw and Morgan Collins.

Southwest airlines: a case study in brittleness

What happens to a complex system when it gets pushed just past its limits?

In some cases, the system in question is able to actually change its limits, so it can handle the new stressors that get thrown at it. When a system is pushed beyond its design limit, it has to change the way that it works. The system needs to adapt its own processes to work in a different way.

We use the term resilience to describe the ability of a system to adapt how it does its work, and this is what resilience engineering researchers study. These researchers have identified multiple factors that foster resilience. For example, people on the front lines of the system need autonomy to be able to change the way they work, and they also need to coordinate effectively with others in the system. A system under stress inevitably need access to additional resources, which means that there needs to be extra capacity that was held in reserve. People need to be able to anticipate trouble ahead, so that they can prepare to change how they work and deploy the extra capacity.

However, there are cases when systems fail to adapt effectively when pushed just beyond their limits. These systems face what Woods and Branlat call decompensation: they exhaust their ability to keep up with the demands placed on them, and their performance falls sharply off of a cliff. This behavior is the opposite of resilience, and researchers call it brittleness.

The ongoing problems facing Southwest Airlines provides us with a clear example of brittleness. External factors such as the large winter storm pushed the system past its limit, and it was not able to compensate effectively in the face of these stressors.

There are many reports coming out of the media now about different factors that contributed to Southwest’s brittleness. I think it’s too early to treat these as definitive. A proper investigation will likely take weeks if not months. When the investigation finally gets completed, I’m sure there will be additional factors identified that haven’t been reported on yet.

But one thing we can be sure of at this point is that Southwest Airlines fell over when pushed beyond its limits. It was brittle.