In the wake of a major incident, you’ll occasionally hear a leader admonish the engineering organization that we need to be more careful in the future in order to prevent such incidents from happening in the future. Ultimately, these sorts of admonishments don’t help improve reliability, because they miss an essential truth about the nature of work in organizations.
One of the big ideas from resilience engineering is the efficiency-thoroughness trade-off, also known as the ETTO Principle. The ETTO principle was first articulated by Erik Hollnagel, one of the founders of the field. The idea is that there’s a fundamental trade-off between how quickly we can complete tasks, and how thorough we can be when working on each individual task. Let’s consider the work of doing software development using AI agents through the lens of the ETTO principle.
Coding agents like Claude Code and OpenAI are capable of automatically generating significant amounts of code. Honestly, it’s astonishing what these tools are capable of today. But like all LLMs, while they will always generate plausible–looking output, they do not always generate correct output. This means that a human needs to check an AI agent’s work to ensure that it’s generating code that’s up to snuff: a human has to review the code generated by the agent.
Screenshot of asking Claude about coding mistakes. Note the permanent warning at the bottom.
As any human software engineer will tell you, reviewing code is hard. It takes effort to understand code that you didn’t write. And larger changes are harder to review, which means that the more work that the agent does, the more work the human in the loop has to do to verify it.
If the code compiles and runs and all tests pass, how much time should the human spend on reviewing it? The ETTO principle tells us there’s a trade-off here: the incentives push software engineers towards completing our development tasks more quickly, which is why we’re all adopting AI in the first place. After all, if it ends up taking just as long to review the AI-generated code as it would have for the human reviewer to write it from scratch, then that defeats the purpose of automating the development task to begin with.
Maybe at first we’re skeptical and we spend more time reviewing the agent code. But, as we get better at working with the agents, and as the AI models themselves get better over time, we’ll figure out where the trouble spots of AI-generated code tend to pop up, and we’ll focus our code review effort accordingly. In essence, we’re riding the ETTO trade-off curve by figuring out how much review effort we should be putting in to and where that effort should go.
Eventually, though, a problem with AI-generated code will slip through this human review process and will contribute to an incident. In the wake of this incident, the software engineers will be reminded that AI agents can make mistakes, and that they need to carefully review the generated code. But, as always, such reminders will do nothing to improve reliability. Because, while AI agents change way that software developers work, they don’t eliminate the efficiency-thoroughness trade-off.
(With apologies to the screenwriters of Forrest Gump)
I’m going to use this post to pull together some related threads from different sources I’ve been reading lately.
Rationalization as discarding information
The first thread is from The Control Revolution by the late American historian and sociologist James Beniger, which was published back in the 1980s: I discovered this book because it was referenced in Neil Postman’s Technopoly.
Beniger references Max Weber’s concept of rationalization, which I had never heard of before. I’m used to the term “rationalization” as a pejorative term meaning something like “convincing yourself that your emotionally preferred option is the most rational option”, but that’s not how Weber meant it. Here’s Beniger, emphasis mine (from p15):
Although [rationalization] has a variety of meanings … most definitions are subsumed by one essential idea: control can be increased not only by increasing the capacity to process information but also by decreasing the amount of information to be processed.
…
In short, rationalization might be defined as the destruction or ignoring of information in order to facilitate its processing.
This idea of rationalization feels very close to James Scott’s idea of legibility, where organizations depend on simplified models of the system in order to manage it.
Decision making: humans versus statistical models
The second thread is from Benjamin Recht, a professor of computer science at UC Berkeley who does research in machine learning. Recht wrote a blog post recently called The Actuary’s Final Word about the performance of algorithms versus human experts on performing tasks such as medical diagnosis. The late American psychology professor Paul Meehl argued back in the 1950s that the research literature showed that statistical models outperformed human doctors when it came to diagnosing medical conditions. Meehl’s work even inspired the psychologist Daniel Kahneman, who famously studied heuristics and biases.
In his post, Recht asks, “what gives?” If we have known since the 1950s that statistical models do better than human experts, why do we still rely on human experts? Recht’s answer is that Meehl is cheating: he’s framing diagnostic problems as statistical ones.
Meehl’s argument is a trick. He builds a rigorous theory scaffolding to define a decision problem, but this deceptively makes the problem one where the actuarial tables will always be better. He first insists the decision problem be explicitly machine-legible. It must have a small number of precisely defined actions or outcomes. The actuarial method must be able to process the same data as the clinician. This narrows down the set of problems to those that are computable. We box people into working in the world of machines.
…
This trick fixes the game: if all that matters is statistical outcomes, then you’d better make decisions using statistical methods.
Once you frame a problem as being statistical in nature, than a statistical solution will be the optimal one, by definition. But, Recht argues, it’s not obvious that we should be using the average of the machine-legible outcomes in order to do our evaluation. As Recht puts it:
How we evaluate decisions determines which methods are best. That we should be trying to maximize the mean value of some clunky, quantized, performance indicator is not normatively determined. We don’t have to evaluate individual decisions by crude artificial averages. But if we do, the actuary will indeed, as Meehl dourly insists, have the final word.
Statistical averages and safe self-driving cars
I had Recht’s post in mind when Reading Philip Koopman’s new book Embodied AI Safety. Koopman is Professor Emeritus of Electrical Engineering at Carnegie-Mellon University, he’s a safety researcher that specializes in automotive safety. (I first learned about him from his work on the Toyota unintended acceleration cases from about ten years ago).
I’ve just started his book, but these lines from the preface jumped out at me (emphasis mine):
In this book, I consider what happens once you … come to realize there is a lot more to safety than low enough statistical rates of harm.
…
[W]e have seen numerous incidents and even some loss events take place that illustrate “safer than human” as a statistical average does not provide everything that stakeholders will expect from an acceptably safe system. From blocking firetrucks, to a robotaxi tragically “forgetting” that it had just run over a pedestrian, to rashes of problems at emergency response scenes, real-world incidents have illustrated that a claim of significantly fewer crashes than human drivers does not put the safety question to rest.
More numbers than you can count
I’m also reading The Annotated Turing by Charles Petzold. I had tried to read Alan Turing’s original paper where he introduced the Turing machine, but found it difficult to understand, and Petzold provides a guided tour through the paper, which is exactly what I was looking for.
I’m currently in Chapter 2, where Petzold discusses the German mathematician Georg Cantor’s famous result that the real numbers are not countable, that the size of the set of real numbers is larger than the size of the set of natural numbers. (In particular, it’s the transcendental numbers like π and e that aren’t countable: we can actually count what are called the algebraic real numbers, like √2).
To tie this back to the original thread: rationalization feels like to me like the process of focusing on only the algebraic numbers (which include the integers and rational numbers), even though most of the real numbers are transcendental.
Ignoring the messy stuff is tempting because it makes analyzing what’s left much easier. But we can’t forget that our end goal isn’t to simplify analysis, it’s to achieve insight. And that’s exactly why you don’t want to throw away the messy stuff.
Recent U.S. headlines have been dominated by school shootings. The bulk of the stories have been about the assassination of Charlie Kirk on the campus of Utah Valley University and the corresponding political fallout. On the same day, there was also a shooting at Evergreen High School in Colorado, where a student shot and injured two of his peers. This post isn’t about those school shootings, but rather, one that happened three years ago. On May 24, 2022, at Robb Elementary School in Uvalde, Texas, 19 students and 2 teachers were killed by a shooter who managed to make his way onto the campus.
Law enforcement were excoriated for how they responded to the Uvalde shooting incident: several were fired, and two were indicted on charges of child endangerment. On January 18, 2024, the Department of Justice released the report on their investigation of the shooting: Critical Incident Review: Active Shooter at Robb Elementary School. According to the report, there were multiple things that went wrong during the incident. Most significantly, the police originally believed that the shooter had barricaded himself in an empty classroom, where in fact shooter was in a classroom with students. There were also communication issues that resulted in a common ground breakdown during the response. But what I want to talk about in this post is the keys.
The search for the keys
During the response to the Uvalde shooting, there was significant effort by the police on the scene to locate master keys to unlock rooms 111/112 (numbered p14, PDF p48, emphasis mine).
Phase III of the timeline begins at 12:22 p.m., immediately following four shots fired inside classrooms 111 and 112, and continues through the entry and ensuing gunfight at 12:49 p.m. During this time frame, officers on the north side of the hallway approach the classroom doors and stop short, presuming the doors are locked and that master keys are necessary.
The search for keys started before this, because room 109 was locked, and had children in it, and the police wanted to evacuate those children (numbered p 13, PDF p48):
By approximately 12:09 p.m., all classrooms in the hallways have been evacuated and/or cleared except rooms 111/112, where the subject is, and room 109. Room 109 is found to be locked and believed to have children inside.
If you look at the Minute-by-Minute timeline section of the report (numbered p17, PDF p50) you’ll see the text “Events: Search for Keys” appear starting at 12:12 PM, all of the way until 12:45 PM.
The irony here is that the door to room 111/112 may have never been locked to begin with, as suggested by the following quote (numbered p15, PDF p48), emphasis mine:
At around 12:48 p.m., the entry team enters the room. Though the entry team puts the key in the door, turns the key, and opens it, pulling the door toward them, the [Critical Incident Review] Team concludes that the door is likely already unlocked, as the shooter gained entry through the door and it is unlikely that he locked it thereafter.
Ultimately, the report explicitly calls out how the search for the keys led to delays in response (numbered p xxviii, PDF p30):
Law enforcement arriving on scene searched for keys to open interior doors for more than 40 minutes. This was partly the cause of the significant delay in entering to eliminate the threat and stop the killing and dying inside classrooms 111 and 112. (Observation 10)
Fixation
In hindsight, we can see that the responders got something very important wrong in the moment: they were searching for keys for a door that probably wasn’t even locked. In this specific case, there appears to have been some communicated-related confusion about the status of the door, as shown by the following (numbered p53, PDF p86):
The BORTAC [U.S. Border Patrol Tactical Unit] commander is on the phone, while simultaneously asking officers in the hallway about the status of the door to classrooms 111/112. UPD Sgt. 2 responds that they do not know if the door is locked. The BORTAC commander seems to hear that the door is locked, as they say on the phone, “They’re saying the door is locked.” UPD Sgt. 2 repeats that they do not know the status of the door.
More generally, this sort of problem is always going to happen during incidents: we are forever going to come to conclusions during an incident about what’s happening that turn out to be wrong in hindsight. We simply can’t avoid that, no matter how hard we try.
The problem I want to focus on here is not the unavoidable getting it wrongin the moment, but the actually-preventable problem of fixation. We “fixate” when we focus solely on one specific aspect of the situation. The problem here is not searching for keys, but on searching for keys to the exclusion of other activities.
During complex incidents, the underlying problem is frequently not well understood, and so the success of a proposed mitigation strategy is almost never guaranteed. Maybe a rollback will fix things, but maybe it won’t! The way to overcome this problem is to pursue multiple strategies in parallel. One person or group focuses on rolling back a deployment that aligns in time, another looks for other types of changes that occurred around the same time, yet another investigates the logs, another looks into scaling up the amount of memory, someone else investigates traffic pattern changes, and so on. By pursuing multiple diagnostic and mitigation strategies in parallel, we reduce the risk of delaying the mitigation of the incident by blocking on the investigation of one avenue that may turn out to not be fruitful.
Doing this well requires diversity of perspectives and effective coordination. You’re more likely to come up with a broader set of options to pursue if your responders have a broader range of experiences. And the more avenues that you pursue, the more the coordination overhead increases, as you now need to keep the responders up to date about what’s going on in the different threads without overwhelming them with details.
Fixation is a pernicious risk because we’re more likely to fixate when we’re under stress. Since incidents are stressful by nature, they are effectively incubators of fixation. In the heat of the moment, it’s hard to take a breath, step back for a moment, understand what’s been tried already, and calmly ask about what the different possible options are. But the alternative is to tumble down the rabbit hole, searching for keys to a door that is already unlocked.
A progressive rollout refers to the act of rolling out some new functionality gradually rather than all at once. This means that, when you initially deploy it, the change only impacts a fraction of your users. The idea behind a progressive rollout is to reduce the risk of a deployment by reducing the blast radius: if something goes wrong with the new thing during deployment, then the impact is much smaller than if you had deployed it all-at-once, to all of the traffic.
The impact of a bad rollout is shown in red
There are two general strategies for doing a progressive rollout. One strategy is coarse grained, where you stage your deploys across domains. For example, deploying the new functionality to one geographic region at a time. The second strategy is more fine-grained, where you define a ramp up schedule (e.g., 1% of traffic to the new thing, then 5%, then 10%, etc.).
Note that the two strategies aren’t mutually exclusive: you can stage your deploy across regions, and within each region, you can do a fine-grained ramp-up within each regions. And you can also think of it as a spectrum rather than two separate categories, since you can control the granularity. But I make the distinction here because I want to talk specifically about the fine-grained approach, where we use a ramp.
The ramp is clearly superior if you’re able to detect a problem during deployment, as shown in the diagram above. It’s a real win if you have automation that can automatically detect based on a metric like error rate. The problem with the ramp is the scenario when you don’t detect that there’s a problem with the deployment.
My claim here in this post is that if you don’t detect a problem with a fine-grained progressive rollout until after the rollout has completed, then it will tend to take you longer to diagnose what the problem is:
Paradoxically, progressive rollout can increase the blast radius by making after-the-fact diagnosis harder
Here’s my argument: once you know something is wrong with your system, but you don’t know what it is that has gone wrong, one of the things you’ll do is to look at dashboard graphs to look for a signal that identifies when the problem started, such as an increase in error rate or request latency. When you do a fine-grained progressive rollout, if something has gone wrong, then the impact will get smeared out over time, and it will be harder to identify the rollout as the relevant change by looking at a dashboard. If you’re lucky, your observability tools will let you slice on the rollout dimension. This is why I like coarse-grained rollouts, because if you have explicit deployment domains like geographical regions, then your observability tools will almost certainly let you slice the data based on those. Heck, you should have existing dashboards that already slice on it. But for fine-grained rolled-out, you may not think to slice on a particular rollout dimension (especially if you’re rolling out a bunch of things at once, all of them doing fine-grained deployments), and you might not even be able to.
To determine whether fine-grained rollouts are a net win depends on a number of factors whose values are not obvious, including:
the probability you detect a problem during the rollout vs after the rollout
how much longer it takes to diagnose the problem if not caught during rollout
your cost model for an incident
On the third bullet: the above diagram implicitly assumes that impact to the business is linear with respect to time. However, it might be non-linear: an hour-long incident may turn out to be more than twice as expensive as two half-hour-long incidents.
As someone who works in the reliability space, I’m acutely aware of the pain of incidents that take a long time to mitigate because they are difficult to diagnose. But I think that the trade-off of fine-grained progressive rollouts are generally not recognized as such: it’s easy to imagine the benefits when the problems are caught earlier, it’s harder to imagine the scenarios where the problem isn’t caught until later, and how harder things get because of it.
The Axiom of Experience: the future will be like the past, because, in the past, the future was like the past. – Gerald M. Weinberg, An Introduction to General Systems Thinking
Last Friday, the San Francisco Bay Area Rapid Transit system (known as BART) experienced a multiple hour outage. Later that day, the BART Deputy General Manager released a memo about the outage with some technical details. The memo is brief, but I was honestly surprised to see this amount of detail in a public document that was released so quickly after an incident, especially from a public agency. What I want to focus on in this post is this line (emphasis mine):
Specifically, network engineers were performing a cutover to a new network switch at Montgomery St. Station… The team had already successfully performed eight similar cutovers earlier this year.
This reminded me of something I read in the Buildkite writeup from an incident that happened back in January of this year (emphasis mine):
Given the confidence gained by initial load testing and the migrations already performed over the past year, we wanted to allow customers to take advantage of their seasonal low periods to perform shard migrations, as a win-win. This caused us to discount the risk of performing migrations during a seasonal low period and what impacts might emerge when regular peak traffic returned.
Rogers had assessed the risk for the initial change of this seven-phased process as “High”. Subsequent changes in the series were listed as “Medium.” [redacted] was “Low” risk based on the Rogers algorithm that weighs prior success into the risk assessment value. Thus, the risk value for [redacted] was reduced to “Low” based on successful completion of prior changes.
Whenever we make any sort of operational change, we have a mental model of the risk associated with the change. We view novel changes (I’ve never done something like this before!) as riskier than changes we’ve performed successfully multiple times in the past (I’ve done this plenty of times). I don’t think this sort of thinking is a fallacy: rather, it’s a heuristic, and it’s generally a pretty effective one! But, like all heuristics, it isn’t perfect. As shown in the examples above, the application of this heuristic can result in a miscalibrated mental model of the risk associated with a change.
So, what’s the broader lesson? In practice, our risk models (implicit or otherwise) are always miscalibrated: a history of past successes is just one of multiple avenues that can lead us astray. Trying to achieve a perfect risk model is like trying to deploy software that is guaranteed to have zero bugs: it’s never going to happen. Instead, we need to accept the reality that, like our code, our models of risk will always have defects that are hidden from us until it’s too late. So we’d better get damned good at recovery.
One of the early criticisms of Darwin’s theory of evolution by natural selection was about how it could account for the development of complex biological structures. It’s often not obvious to us how the earlier forms of some biological organ would have increase fitness. “What use”, asked the 19th century English biologist St. George Jackson Mivart, “is half a wing?”
One possible answer is that while half a wing might not be useful for flying, it may have had a different function, and evolution eventually repurposed that half-wing for flight. This concept, that evolution can take some existing trait in an organism that serves a function and repurpose it to serve a different function, is called exaptation.
Biology seems to be quite good at using the resources that it has at hand in order to solve problems. Not too long ago, I wrote a review of the book How Life Works: A User’s Guide to the New Biology by the British science writer Philip Ball. One of the main themes of the book is how biologists’ view of genes has shifted over time from the idea DNA-as-blueprint to DNA-as-toolbox. Biological organisms are able to deal effectively with a wide range of challenges by having access to a broad set of tools, which they can deploy as needed based on their circumstances.
We’ll come back to the biology, but for a moment, let’s talk about software design. Back in 2011, Rich Hickey gave a talk at the (sadly defunct) Strange Loop conference with the title Simple Made Easy (transcript, video). In this talk, Hickey drew a distinction between the concepts of simple and easy. Simple is the opposite of complex, where easy is something that’s familiar to us: the term he used to describe the concept of easy that I really liked was at hand. Hickey argues that when we do things that are easy, we can initially move quickly, because we are doing things that we know how to do. However, because easy doesn’t necessarily imply simple, we can end up with unnecessarily complex solutions, which will slow us down in the long run. Hickey instead advocates for building simple systems. According to Hickey, simple and easy aren’t inherently in conflict, but are instead orthogonal. Simple is an absolute concept, and easy is relative to what the software designer already knows.
I enjoy all of Rich Hickey’s talks, and this one is no exception. He’s a fantastic speaker, and I encourage you to listen to it (there are some fun digs at agile and TDD in this one). And I agree with the theme of his talk. But I also think that, no matter how many people listen to this talk and agree with it, easy will always win out over simple. One reason is the ever-present monster that we call production pressure: we’re always under pressure to deliver our work within a certain timeframe, and easier solutions are, by definition, going to be ones that are faster to implement. That means the incentives on software developers tilts the scales heavily towards the easy side. Even more generally, though, easy is just too effective a strategy for solving problems. The late MIT mathematics professor Gian-Carlo Rota noted that every mathematician has only a few tricks, and that includes famous mathematicians like Paul Erdős and David Hilbert.
Let’s look at two specific examples of the application of easy from the software world, specifically, database systems. The first example is about knowledge that is at-hand. Richard Hipp implemented the SQLite v1 as a compiler that would translate SQL into byte code, because he had previous experience building compilers but not building database engines. The second example is about an exaptation, leveraging an implementation that was at-hand. Postgres’s support for multi-version concurrency control (MVCC) relies upon an implementation that was originally designed for other features, such as time-travel queries. (Multi-version support was there from the beginning, but MVCC was only added in version 6.5).
Now, the fact that we rely frequently on easy solutions doesn’t necessarily mean that they are good solutions. After all, the Postgres source I originally linked to has the title The Part of PostgreSQL We Hate the Most. Hickey is right that easy solutions may be fast now, but they will ultimately slow us down, as the complexity accretes in our system over time. Heck, one of the first journal papers that I published was a survey paper on this very topic of software getting more difficult to maintain over time. Any software developer that has worked at a company other than a startup has felt the pain of working with a codebase that is weighed down by what Hickey refers to in his talk as incidental complexity. It’s one of the reasons why startups can move faster than more mature organizations.
But, while companies are slowed down by this complexity, it doesn’t stop them entirely. What Hickey refers to in his talk as complected systems, the resilience engineering researcher David Woods refers to as tangled. In the resilience engineering view, Woods’s tangled, layered networks inevitably arise in complex systems.
Hickey points out that humans can only keep a small number of entities in their head at once, which puts a hard limit on our ability to reason about our systems. But the genuinely surprising thing about complex systems, including the ones that humans build, is that individuals don’t have to understand the system for them to work! It turns out that it’s enough for individuals to only understand parts of the system. Even without anyone having a complete understanding of the whole system, we humans can keep the system up and running, and even extend its functionality over time.
Now, there are scenarios when we do need to bring to bear an understanding of the system that is greater than any one person possesses. My own favorite example is when there’s an incident that involves an interaction between components, where no one person understands all of the components involved. But here’s another thing that human beings can do: we can work together to perform cognitive tasks that none of us could do on their own, and one such task is remediating an incident. This is an example of the power of diversity, as different people have different partial understandings of the system, and we need to bring those together.
To circle back to biology: evolution is terrible at designing simple systems: I think biological systems are the most complex systems that we humans have encountered. And yet, they work astonishingly well. Now, I don’t think that we should design software the way that evolution designs organisms. Like Hickey, I’m a fan of striving for simplicity in design. But I believe that complex systems, whether you call them complected or tangled, are inevitable, they’re just baked in to the fabric of the adaptive universe. I also believe that easy is such a powerful heuristic that it is also baked in to how we build and involved systems. That being said, we should be inspired, by both biology and Hickey, to have useful tools at-hand. We’re going to need them.
A few weeks ago, Cloudflare experienced a major outage of their popular 1.1.1.1 public DNS resolver.
On July 14th, 2025, Cloudflare made a change to our service topologies that caused an outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for Gateway DNS.
Technically, the DNS resolver itself was working just fine: it was (as far as I’m aware) up and running the whole time. The problem was that nobody on the Internet could actually reach it. The Cloudflare public write-up is quite detailed, and I’m not going to summarize it here. I do want to bring up one aspect of their incident, because it’s something I worry about a lot from a reliability perspective: migrations.
Cloudflare’s migration
When this incident struck, Cloudflare supported two different ways of managing what they call service topologies. There was a newer system that supported progressive rollout, and an older system where the changes occurred globally. The Cloudflare incident involved the legacy system, which makes global changes, which is why the blast radius of this incident was so large.
Cloudflare engineers were clearly aware that these sorts of global changes are dangerous. After all, I’m sure that’s one of the reasons why they built their new system in the first place. But migrating all of the way to the new thing takes time.
Migrations and why I worry about them
If you’ve ever worked at any sort of company that isn’t a startup, you’ve had to deal with a migration. Sometimes a migration impacts only a single team that owns the system in question, but often migrations are changes that are large in scope (typically touching many teams) which, while providing new capabilities to the organization as a whole, don’t provide much short-term benefit to the teams who have to make a change to accommodate the migration.
A migration is a kind of change that, almost by definition, the system wasn’t originally designed to accommodate. We build our systems to support making certain types of future changes, and migrations are exactly not these kinds of changes. Each migration is typically a one-off type of change. While you’ll see many migrations if you work at a more mature tech company, each one will be different enough that you won’t be able to leverage common tooling from one migration to help make the next one easier.
All of this adds up to reliability risk. While a migration-related change wasn’t a factor in the Cloudflare incident, I believe that such changes are inherently risky, because you’re making a one-off change to the way that your system works. Developers generally have a sense that these sorts of changes are risky. As a consequence, for an individual on a team who has to do work to support somebody else’s migration, all of the incentives push them towards dragging their feet: making the migration-related change takes time away from their normal work, and increases the risk they break something. On the other hand, completing the migration generally doesn’t provide them short-term benefit. The costs typically outweigh the benefits. And so all of the forces push towards migrations taking a long time.
But a delay in implementing a migration is also a reliability risk, since migrations are often used to improve the reliability of the system. The Cloudflare incident is a perfect example of this: the newer system was safer than the old one, because it supported staged rollout. And while they ran the new system, they had to run the old one as well.
Why run one system when you can run two?
The scariest type of migration to me is the big bang migration, where you cut over all at once from the old system to the new one. Sometimes you have no choice, but it’s an approach that I personally would avoid whenever possible. The alternative is to do incremental migration, migrating parts of the system over time. To do incremental migration, you need to run the old system and the new system concurrently, until you’ve completely finished the migration and can shut the old system down. When I worked at Netflix, people used the term Roman riding to refer to running the old and new system in parallel, in reference to a style of horseback riding.
What actual Roman riding looks like
The problem with Roman riding is that it’s risky as well. While incremental is safer than big bang, running two systems concurrently increases the complexity of the system. There are many, many opportunities for incidents while you’re in the midst of a migration running the two systems in parallel.
What is to be done?
I wish I had a simple answer here. But my unsatisfying one is that engineering organizations at tech companies need to make migrations a part of their core competency, rather than seeing them as one-off chores. I frequently joke that platform engineering should really be called migration engineering, because any org large enough to do platform engineering is going to be spending a lot of its cycles doing migrations.
Migrations are also unglamorous work: nobody’s clamoring for the title of migration engineer. People want to work on greenfield projects, not deal with the toil of a one-off effort to move the legacy thing onto the new thing. There’s also not a ton written on doing migrations. A notable exception is (fellow TLA+ enthusiast) Marianne Bellotti’s book Kill It With Fire, which sits on my bookshelf, and which I really should re-read.
I’ll end this post with some text from the “Remediation and follow-up steps” of the Cloudflare writeup:
We are implementing the following plan as a result of this incident:
Staging Addressing Deployments: Legacy components do not leverage a gradual, staged deployment methodology. Cloudflare will deprecate these systems which enables modern progressive and health mediated deployment processes to provide earlier indication in a staged manner and rollback accordingly.
Deprecating Legacy Systems: We are currently in an intermediate state in which current and legacy components need to be updated concurrently, so we will be migrating addressing systems away from risky deployment methodologies like this one. We will accelerate our deprecation of the legacy systems in order to provide higher standards for documentation and test coverage.
I’m sure they’ll prioritize this particular migration because of the attention garnered on it from this incident. But I also bet there are a whole lot more in-flight migrations at Cloudflare, as well as at other companies, that increase complexity through maintaining two systems and delaying moving to the safer thing. What are they actually going to do in order to complete those other migrations more quickly? If it was easy, it would already be done.
When writing up my impressions of the GCP incident report, Cindy Sridharan’s tweet reminded me that I failed to comment on an important part of it, how the responders brought the overloaded system back to a healthy state.
Full report for yesterday’s Google outage
– not feature flagging a new code path – null pointer crashing a binary when reading empty fields from Spanner – remediation causing a thundering herd as there was no exponential backoff – which required manual throttling to recover from pic.twitter.com/6AQ4BQk5ex
Which brings me to the topic of this post: the “what went well” section of an incident write-up. Generally, public incident write-ups don’t have such sections. This is almost certainly for rational political reasons: it would be, well, gauche to recount to your angry customers about what a great job you did handling the incident. However, internal write-ups often have such sections, and that’s my focus here.
In my experience, “What went well” is typically the shortest section in the entire incident report, with a few brief bullet points that point out some positive aspects of the response (e.g., people responded quickly). It’s a sort of way-to-go!, a way to express some positive feedback to the responders on a job well done. This is understandable, as people believe that if we focus more on what went wrong than what went well, then we are more likely to improve the system, because we are focusing on repairing problems. This is why “what went wrong” and “what can we do to fix it” takes the lion’s share of the attention.
But the problem with this perspective is that it misunderstands the skills that are brought to bear during incident response, and how learning from a previously well-handled incident can actually help other responders do better in future incidents. Effective incident response happens because the responders are skilled. But every incident response team is an ad-hoc one, and just because you happened to have people with the right set of skills responding last time, doesn’t mean you’ll have the people with the right set the next time. This means that if you gloss over what went well, your next incident might be even worse than the last one, because you’ve described those future responders of the opportunity to learn from observing the skilled responders last time.
To make this more concrete, let’s look back at that the GCP incident report. In this scenario, the engineers had put in a red-button as a safety precaution and exercised it to remediate the audience.
As a safety precaution, this code change came with a red-button to turn off that particular policy serving path… Within 2 minutes, our Site Reliability Engineering team was triaging the incident. Within 10 minutes, the root cause was identified and the red-button (to disable the serving path) was being put in place.
However, that’s not the part that interests me so much. Instead, it’s the part about how the infrastructure became overloaded as a consequence of the remediation, and how the responders recovered from overload.
Within some of our larger regions, such as us-central-1, as Service Control tasks restarted, it created a herd effect on the underlying infrastructure it depends on (i.e. that Spanner table), overloading the infrastructure…. It took up to ~2h 40 mins to fully resolve in us-central-1 as we throttled task creation to minimize the impact on the underlying infrastructure and routed traffic to multi-regional databases to reduce the load.
This was not a failure scenario that they had explicitly designed for in advance of deploying the change: there was no red-button they could simply exercise to roll back the system to a non-overloaded state. Instead, they were forced to improvise a solution based on the controls that were available to them. In this case, they were able to reduce the load by turning down the rate of task creation, as well as by re-routing traffic away from the overloaded database.
And this sort of work is the really interesting bit an incident: how skilled responders are able to take advantage of generic functionality that is available in order to remediate an unexpected failure mode. This is one of the topics that the field of resilience engineering focuses on, how incident responders are able to leverage generic capabilities during a crunch. If I was an engineer at Google in this org, I would be very interested to learn what knobs are available and how to twist them. Describing this in detail in an incident write-up will increase my chances of being able to leverage this knowledge later. Heck, even just leaving bread crumbs in the doc will help, because I’ll remember the incident, look up the write-up, and follow the links.
Another enormously useful “what went well” aspect that often gets short shrift is a description of the diagnostic work: how the responders figured out what was going on. This never shows up in public incident write-ups, because the information is too proprietary, so I don’t blame Google for not writing about how the responders determined the source of the overload. But all too often these details are left out of the internal write-ups as well. This sort of diagnostic work is a crucial set of skills for incident response, and having the opportunity to read about how experts applied their skills to solve this problem help transfers these skills across the organization.
Here’s my claim: providing details on how things went well will reduce your future mitigation time even more than focusing on what went wrong. While every incident is different, the generic skills are common, and so getting better at response will get you more mileage than preventing repeats of previous incidents. You’re going to keep having incidents over and over. The best way to get better at incident handling is to handle more incidents yourself. The second best way is to watch experts handle incidents. The better you do at telling the stories of how your incidents were handled, the more people will learn about how to handle incidents.
On Thursday (2025-06-12), Google Cloud Platform (GCP) had an incident that impacted dozens of their services, in all of their regions. They’ve already released an incident report (go read it!), and here are my thoughts and questions as I read it.
Note that the questions I have shouldn’t be explicitly seen as a critique as of the write-up, as the answers to the questions generally aren’t publicly shareable. They’re more in the “I wish I could be a fly on the wall inside of Google” questions.
Quick write-up
First, a meta-point: this is a very quick turnaround for a public incident write-up. As a consumer of these, I of course appreciate getting it faster, and I’m sure there was enormous pressure inside of the company to get a public write-up published as soon as possible. But I also think there are hard limits on how much you can actually learn about an incident when you’re on the clock like this. I assume that Google is continuing to investigate internally how the incident happened, and I hope that they publish another report several weeks from now with any additional details that they are able to share publicly.
Staging land mines across regions
Note that impact (June 12) happened two weeks after deployment (May 29).
This code change and binary release went through our region by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would trigger the code.
The system involved is called Service Control. Google stages their deploys of Service Control by region, which is a good thing: staging your changes is a way of reducing the blast radius if there’s a problem with the code. However, in this case, the problematic code path was not exercised during the regional rollout. Everything looked good in the first region, and so they deployed to the next region, and so on.
This the land mine risk: when the code you are rolling out contains a land mine which is not tripped during the rollout.
How did the decisions make sense at the time?
I have no information about how this incident came to be but I can confidently predict that people will blame it on greedy execs and sloppy devs, regardless of what the actual details are. And they will therefore learn nothing from the details.
The issue with this change was that it did not have appropriate error handling nor was it feature flag protected. Without the appropriate error handling, the null pointer caused the binary to crash.
This is the typical “we didn’t do X in this case and had we done X, this incident wouldn’t have happened, or wouldn’t have been as bad” sort of analysis that is very common in these write-ups. The problem with this is that it implies sloppiness on the part of the engineers, that important work was simply overlooked. We don’t have any sense on how the development decisions made sense at the time.
If this scenario was atypical (i.e., usually error handling and feature flags are added), what was different about this development case? We don’t have the context about what was going on during development, which means we (as external readers) can’t understand how this incident actually was enabled.
Feature flags are used to gradually enable the feature region by region per project, starting with internal projects, to enable us to catch issues. If this had been flag protected, the issue would have been caught in staging.
How do they know it would have been caught in staging, if it didn’t manifest in production until two weeks after roll-out? Are they saying that adding a feature flag would have led to manual testing of the problematic code path in staging? Here I just don’t know enough about Google’s development processes to make sense of this observation.
Service Control did not have the appropriate randomized exponential backoff implemented to avoid [overloading the infrastructure].
As I discuss later, I’d wager it’s difficult to test for this in general, because the system generally doesn’t run in the mode that would exercise this. But I don’t have the context, so it’s just a guess. What’s the history behind Service Control’s backoff behavior? By definition, Without knowing its history, we can’t really understand how its backoff implementation came to be this way.
Red buttons and feature flags
As a safety precaution, this code change came with a red-button to turn off that particular policy serving path. The issue with this change was that it did not have appropriate error handling nor was it feature flag protected. (emphasis added)
Because I’m unfamiliar with Google’s internals, I don’t understand how their “red button” system works. In my experience, the “red button” type functionality is built on top of feature flag functionality, but that does not seem to be the case at Google, since here there was no feature flag, but there was a big red button.
It’s also interesting to me that, while this feature wasn’t feature-flagged it was big-red-buttoned. There’s a story here! But I don’t know what it is.
New feature: additional policy quota checks
On May 29, 2025, a new feature was added to Service Control for additional quota policy checks… On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for policies.
I have so many questions.. What were these additional quota policy checks? What was the motivation for adding these checks (i.e., what problem are the new checks addressing)? Is this customer-facing functionality (e.g., GCP Cloud Quotas), or is this an internal-only? What was the purpose of the policy change that was inserted on June 12 (or was it submitted by a customer)? Did that policy change take advantage of the new Service Control features that were added on May 29? Was that the first policy change that happened since the new feature was deployed, or had there been others? How frequently do policy changes happen?
Global data changes
Code changes are scary, config changes are scarier, and data changes are the scariest of them all.
Given the global nature of quota management, this metadata was replicated globally within seconds.
While code and feature flag changes are staged across regions, apparently quota management metadata is designed to replicate globally.
Regardless of the business need for near instantaneous consistency of the data globally (i.e. quota management settings are global), data replication needs to be propagated incrementally with sufficient time to validate and detect issues. (emphasis mine)
The implication I take from from the text was that there was a business requirement for quota management data changes to happen globally rather than staged, and that they are now going to push back on that.
What was the rationale for this business requirement? What are the tradeoffs involved in staging these changes versus having them happen globally? What new problems might arise when data changes are staged like this?
Are we going to be reading a GCP incident report in a few years that resulted from inconsistency of this data across regions due to this change?
Saturation!
From an operational perspective, I remain terrified of databases
Within some of our larger regions, such as us-central-1, as Service Control tasks restarted, it created a herd effect on the underlying infrastructure it depends on (i.e. that Spanner table), overloading the infrastructure.
Here we have a classic example of saturation, where a database got overloaded. Note that saturation wasn’t the trigger here, but it made recovery more difficult. Our system is in a different mode during incident recovery than it is during normal mode, and it’s generally very difficult to test for how it will behave when it’s in recovery mode.
Does this incident match my conjecture?
I have a long-standing conjecture that once a system reaches a certain level of reliability, most major incidents will involve:
A manual intervention that was intended to mitigate a minor incident, or
Unexpected behavior of a subsystem whose primary purpose was to improve reliability
I don’t have enough information in this write-up to be able to make a judgment in this case: it depends on whether or not the quota management system’s purpose is to improve reliability. I can imagine it going either way. If it’s a public-facing system to help customers limit their costs, then that’s more of a traditional feature. On the other hand, if it’s to limit the blast radius of individual user activity, then that feels like a reliability improvement system.
What are the tradeoffs of the corrective actions?
The write-up lists seven bullets of corrective actions. The questions I always have of corrective actions are:
What are the tradeoffs involved in implementing these corrective actions?
How might they enable new failure modes or make future incidents more difficult to deal with?
A year ago, Mihail Eric wrote a blog post detailing his experiences working on AI inside Amazon: How Alexa Dropped the Ball on Being the Top Conversational System on the Planet. It’s a great first-person account, with lots of detail of the issues that kept Amazon from keeping up with its peers in the LLM space. From my perspective, Eric’s post makes a great case study in what resilience engineering researchers refer to as brittleness, which is a term that the researchers use to refer to as a kind of opposite of resilience.
In the paper Basic Patterns in How Adaptive Systems Fail, the researchers David Woods and Matthieu Branlat note that brittle systems tend to suffer from the following three patterns:
Decompensation: exhausting capacity to adapt as challenges cascade
Working at cross-purposes: behavior that is locally adaptive but globally maladaptive
Getting stuck in outdated behaviors: the world changes but the system remains stuck in what were previously adaptive strategies (over-relying on past successes)
Eric’s post demonstrates how all three of these patterns were evident within Amazon.
Decompensation
It would take weeks to get access to any internal data for analysis or experiments… Experiments had to be run in resource-limited compute environments. Imagine trying to train a transformer model when all you can get a hold of is CPUs. Unacceptable for a company sitting on one of the largest collections of accelerated hardware in the world.
If you’ve ever seen a service fall over after receiving a spike in external requests, you’ve seen a decompensation system failure. This happens when a system isn’t able to keep up with the demands that are placed upon on it.
In organizations, you can see the decompensation failure pattern emerge when decision-making is very hierarchical: you end up having to wait for the decision request to make its way up to someone who has the authority to make the decision, and then make its way down again. In the meantime, the world isn’t standing still waiting for that decision to be made.
As described in the Bad Technical Process section of Eric’s post, Amazon was not able to keep up with the rate at which its competitors were making progress on developing AI technology, even though Amazon had both the talent and the compute resources necessary in order to make progress. The people inside the organization who needed the resources weren’t able to get them in a timely fashion. That slowed down AI development and, consequently, they got lapped by their competitors.
Working at cross-purposes
Alexa’s org structure was decentralized by design meaning there were multiple small teams working on sometimes identical problems across geographic locales.
This introduced an almost Darwinian flavor to org dynamics where teams scrambled to get their work done to avoid getting reorged and subsumed into a competing team.
The consequence was an organization plagued by antagonistic mid-managers that had little interest in collaborating for the greater good of Alexa and only wanted to preserve their own fiefdoms.
My group by design was intended to span projects, whereby we found teams that aligned with our research/product interests and urged them to collaborate on ambitious efforts. The resistance and lack of action we encountered was soul-crushing.
Where decompensation is a consequence of poor centralization, working at cross-purposes is a consequence of poor decentralization. In a decentralized organization, the individual units are able to work more quickly, but there’s a risk of alignment: enabling everyone to row faster isn’t going to help if they’re rowing in different directions.
In the Fragmented Org Structures section of Eric’s writeup, he goes into vivid, almost painful detail about how Amazon’s decentralized org structure worked against them.
Getting stuck in outdated behaviors
Alexa was viciously customer-focused which I believe is admirable and a principle every company should practice. Within Alexa, this meant that every engineering and science effort had to be aligned to some downstream product.
That did introduce tension for our team because we were supposed to be taking experimental bets for the platform’s future. These bets couldn’t be baked into product without hacks or shortcuts in the typical quarter as was the expectation.
So we had to constantly justify our existence to senior leadership and massage our projects with metrics that could be seen as more customer-facing.
…
This introduced product/science conflict in every weekly meeting to track the project’s progress leading to manager churn every few months and an eventual sunsetting of the effort.
I’m generally not a fan of management books, but What got you here won’t get you there is a pretty good summary of the third failure pattern: when organizations continue to apply approaches that were well-suited to problems in the past but are ill-suited to problems in the present.
In the Product-Science Misalignment section of his post, Eric describes how Amazon’s traditional viciouslycustomer-focused approach to development was a poor match for the research-style work that was required for developing AI. Rather than Amazon changing the way they worked in order to facilitate the activities of AI researchers, the researchers had to try to fit themselves into Amazon’s pre-existing product model. Ultimately, that effort failed.
I write mostly about software incidents on this blog, which are high-tempo affairs. But the failure of Amazon to compete effectively in the AI space, despite its head start with Alexa, its internal talent, and its massive set of compute resources, can also be viewed as a kind of incident. As demonstrated in this post, we can observe the same sorts of patterns in failures that occur in the span of months as we can in failures that occur in the span of minutes. How well Amazon is able to learn from this incident remains to be seen.