I’m re-reading a David Woods’s paper titled the theory of graceful extensibility: basic rules that govern adaptive systems. The paper proposes a theory to explain how certain types of systems are able to adapt over and over again to changes in their environment. He calls this phenomenon sustained adaptability, which we contrasts with systems that can initially adapt to an environment but later collapse when some feature of the environment changes and they fail to adapt to the new change.
Woods outlines six requirements that any explanatory theory of sustained adaptability must have. Here’s the fourth one (emphasis in the original):
Fourth, a candidate theory needs to provide a positive means for a unit at any scale to adjust how it adapts in the pursuit of improved fitness (how it is well matched to its environment), as changes and challenges continue apace. And this capability must be centered on the limits and perspective of that unit at that scale.
The phrase “adjust how it adapts” really struck me. Since adaptation is a type of change, this is referring to a second-order change process: these adaptive units have the ability to change the mechanism by which they change themselves! This notion reminded me of Chris Argyris’s idea of double-loop learning.
Woods’s goal is to determine what properties a system must have, what type of architecture it needs, in order to achieve this second-order change process. He outlines in the paper that any such system must be a layered architecture of units that can adapt themselves and coordinate with each other, which he calls a tangled, layered network.
Woods believes there are properties that are fundamental to systems that exhibit sustained adaptability, which implies that these fundamental properties don’t change! A tangled, layered network may reconfigure itself in all sorts of different ways over time, but it must still be tangled and layered (and maintain other properties as well).
The more such systems stay the same, the more they change.